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This is a final report on work performed under NASA Grant NAG-1-

lll2-FOP during the period March, 1990 through February, ]995. This

grant supported four major projects, which we briefly describe.

Solution of Nonlinear Poisson-Type Equations

This was joint work with Brett Averick, who received a PhD in Applied

Mathematics in January, 1991. The equation of interest was

V(KVu)= f (1)

where K is a function of u so that (1) is nonlinear. In this case,the Jacobian

matrix of the corresponding discrete equation

A(u)u=b(u)

is not symmetric although the skew-symmetric terms are small. We use this

fact to approximate the Jacobian by A(u), which is symmetric and positive

definite. This gives rise to an approximate Newton method with fast linear

convergence, rather than quadratic convergence. The linear systems at each

stage are solved approximately by the incomplete Cholesky preconditioned

conjugate gradient method with a variable convergence criterion; this allows

relatively few conjugate gradient iterations until the iterates are near the

solution. Problems on a 63 x 63 x 63 grid (250,000 unknowns) are solved on

a single processor of the CRAY-2 in 15 - 20 seconds, depending on the initial

approximation. This work was published in [1].

Another approach was developed based on the formulation of (1) as

= f. (2)

if ¢ is a f nction such that then

V2¢(u) = V(¢'(u)Vu)= V(K(u)Vu),

and (2) is equivalent to (1). Thus, we obtain the solution of (1), in principle,

by the two step process:

I. Solve the Poisson equation

V2w = f. (3)



II. Solve one-dimensional nonlinear equations

¢(up) = w_, (4)

where wp denotes the solution of (3) at a point P in the domain. The

equations (4) can all be solved in parallel, and with no communication on a

distributed memory machine. Provided that the domain is such that a Fast

Poisson Solver can be used for (3), the method is very fast. This work was

published in [2], and was jointly sponsored by NASA-Grants NAG-l-242,

which supported Mr. Averick and NAG-l-1050.

Parallel Reduced System Conjugate Gradient Method

This was joint work with Lori Freitag, who was supported by a NASA

Space Grant fellowship and the National Science Foundation, and received

her PhD in Applied Mathematics in July 1992. The model differential equa-

tion is the three dimensional Helmholtz equation

V(KVu) + cu = f (5)

where K is now a function only of the spatial variables. The domain is a

parallelpiped and combinations of Dirichlet, Neumann and periodic boundary

conditions are considered. This equation was proposed by T. Zang of the

Theoretical Flow Physics Branch and is a kernel of various fluid codes at

Langley. The differential equation is discretized by finite differences with

variable grid spacing. Using the red/black ordering of the grid points, the

discrete system to be solved is

[/ ,6,Au = C I U B bB

where the main diagonal elements of A have been scaled to unity. The

corresponding Schur complement system for uB is

(I - ccT)uB : bB - CbR (7)



and oncethis is solved,uR = bR- CTuB • Thus, the solution of (6) essentially

reduces to that of (7), which is a system of only half the size. If A is positive

definite, so is I - CC T. Thus, the conjugate gradient method can be applied

to (7), and this is the reduced system conjugate gradient (RSCG) method.

The main work in carrying out the RSCG method is a matrix-vector

multiplication with I-CC T at each conjugate gradient iteration. This matrix

is not formed; only multiplications by C and C T are performed. Various data

distributions for the Intel iPSC/860 were considered, in particular, using

one, two and three dimensional mesh-connected arrays of processors. The

optimal balance between message volume and the number of messages occurs

for the two-dimensional array, and this configuration was used for subsequent

experiments with the RSCG algorithm. The results for this algorithm show

a megaflop rate of almost 450 on 128 processors, which corresponds to an

efficiency of over 60%.

We also developed an analytical model of the algorithm, which can be

used to predict performance on a larger number of processors and on hypo-

thetical modifications of the Intel iPSC/860. For example, this model pre-

dicts an efficiency of over 60% on 2048 current processors and an efficiency

of over 70% if the communication latency and transmission speed could both

be halved.

We also considered various preconditioners for the reduced system. We

concluded that it was not cost effective to form the reduced system explicitly

so that preconditioners such as incomplete Cholesky factorization could be

used. We tested two other preconditioners that do not require the explicit

formation of the reduced system: damped Jacobi iteration and coarse grid

deflation. We found that although both preconditioners reduced the number

of iterations considerably the overall time did not decrease. Thus, suitable

parallel preconditioners remain an open question. Results from this work

were published in [3] and [4].

Orderings for Conjugate Gradient Preconditioners

In conjunction with Stephanie Stotland, who received a PhD in Applied

Mathematics in September, 1993, we investigated different orderings of sys-

tems of linear equations arising from discretization of the Poisson-type dif-

ferential equation



V(KVu) = f (8)

in three dimensions. The red/black ordering has excellent parallel properties

but seriously degrades the rate of convergence of the preconditioned conju-

gate gradient method when used with SSOR or Incomplete Cholesky pre-

conditioning. The diagonal ordering maintains the rate of convergence and

is good on vector machines such as the CRAY-2 but on distributed memory

machines suffers from excessive communication and is not competitive with

the red/black ordering. Similarly, the many-color orderings studied by Hat-

rat and Ortega for vector computers require extensive communication and

are not competitive.

Orderings based on domain decomposition have shown more promise.

Preliminary experiments in two-dimensions were performed on a number of

such orderings: the usual block type decomposition, with and without sepa-

rator sets, and strip orderings, with and without separator sets. All of these

orderings performed quite well. However, the block orderings proved difficult

to extend to a large number of blocks and to three dimensions. They also

did not allow full use of the Eisenstat modification, which essentially elimi-

nates the matrix-vector multiplication in the conjugate gradient algorithm.

Hence, we concentrated on the strip orderings and since the ordering without

separator sets had somewhat better parallel properties, we implemented this

ordering (called the slab ordering) in three-dimensions.

The slab ordering in three-dimensions proved superior to the red/black

ordering in a number of experiments on the iPSC/860s at NASA-Langley

and Oak Ridge (up to 128 processors). These experimental results were

supplemented by an analysis of the remainder matrices of the two orderings

and also an analytic model. This work is pending publication [5].

SOR as a Preconditioner

Professor Ortega and Michael DeLong, a PhD candidate in Computer

Science, have been studying the use of the SOR iteration as a highly par-

allel preconditioner for nonsymmetric systems of linear equations. A model

problem, which has been used for experiments, is the convection-diffusion

equation

V2u + aux -t- bu u = f (9)
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discretized by finite differences on the unit square. Unless a = b = O, this

leads to a nonsymmetric system of linear equations. We have also consid-

ered two other convection-diffusion type equations used by J. Shalid and R.

Tuminaro:

-u_ + u_ + (1 + y2)(-uyy + uu) = f(x,y) (10)

-u_- uy u + lO0(x2u_ + y2uy) - j3u = f(x,y) (11)

both also on the unit square with Dirichlet boundary conditions and dis-

cretized by centered differences.

The basic iteration we have been using for experiments is GMRES(m),

where m is the number of steps before restart. (We also have some prelim-

inary results with BiCGSTAB.) We precondition the system with k steps

of the SOR iteration; thus, we have a two-parameter method SOR(k) -

GMRES(m).

Some of the conclusions so far, based on experiments with a serial code

running on an IBM RS/6000, are:

As expected, use of the red/black ordering does not noticeably degrade

the rate of convergence. Thus, the red/black ordering will allow a

highly parallel implementation of the SOR iteration. The red/black

ordering, however, does badly degrade the rate of convergence of ILU,

when used as a preconditioner for GMRES.

The use of a good value of co in the SOR iteration cuts the time to

convergence by roughly half. As opposed to the stand-alone SOR iter-

ation, the convergence curve as a function of co is very flat to the left

of the optimum w, leading to the possibility of estimating a good value

of _o much more easily than with the SOR iteration. However, care is

needed since an co only slightly to the right of the optimum co may lead

to divergence.

On equations (10) and (11), Shahid and Tuminaro used one step of

Gauss-Seidel and no w as a preconditioner in a comparison of several

other preconditioners. Our results indicate that on these equations,

use of several SOR steps and a reasonable value of w improves the

time by factors of 3 to 10. In this way, SOR could have been the best

preconditioner for (11) and quite competitive for (10).
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A report [6] on these results has been submitted for publication. This

project is continuing. A parallel code for the IBM SP2 is currently under

development.

Multigrid Methods

In addition to the above projects, Professor Ortega directed the PhD

thesis by Robert Falgout entitled Algebraic-Geometric Multigrid Methods for

Poisson-Type Equations, which was completed in 1991.
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